新技术与就业:数据仓库与企业智能化(DW/BI)
时间: 1月4日 (周日) 上午10点
【特邀嘉宾】:
徐方京博士:Frank Xu 博士是数据库和数据仓库方面的高级顾问,从事IT工作15年,曾执教于上海同济大学,在北美就职于世界顶级的咨询公司KMPG和 Deloitte,客户遍及美国,加拿大和中国等。长期与客户打交道的经验使其见多识广,充分了解客户的不同要求,积累了一套完整的数据仓库解决方案。徐博士在Oracle 数据库、Informatica ETL 和Cognos BI有着更特别的专长。
企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。
信息是现代企业的重要资源,是企业运用科学管理、决策分析的基础。目前,大多数企业花费大量的资金和时间来构建联机事务处理的业务系统和办公自动化系统,用来记录事务处理的各种相关数据。据统计,数据量每2~3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占在总数据量的2%~4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以致于浪费了更多的时间和资金,也失去制定关键商业决策的最佳契机。于是,企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。OLTP
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。而商业智能能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。